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Abstract

In this paper, Green’s function for an acoustic source within half-space seawater overlying a porous seabed is

established. The half-space seawater is described using the Helmholtz equation, while the seabed is considered as a

saturated porous medium and characterized by Biot’s theory. Green’s function of the half-space seawater has two

components: the principal and complementary parts. The principal part of Green’s function is the solution for a

conventional acoustic point source in an infinite medium, while the complementary part corresponds to the general

solution of the Helmholtz equation for the half-space. Green’s function of the half-space seabed is obtained by solving

Biot’s dynamic equations via the Hankel transform method. Using the continuity conditions at the interface between the

seawater and the seabed, the closed-form Green’s functions for the seawater and the seabed in the frequency–wavenumber

domain are determined. The frequency domain Green’s function is recovered by the inversion of the Hankel transform.

A parametric study is carried out for Green’s function in the frequency domain, and a time domain example is presented in

terms of frequency domain Green’s function. Numerical results show that the permeability of the porous seabed has very

little influence on the response of the seawater, while Biot’s modulus has a pronounced influence on the wave field.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Studies of oceanic acoustic waves have numerous applications in areas such as marine exploration,
underwater communication, ocean tomography, and ocean telemetry, as acoustic waves are the only kind of
waves that can propagate within seawater for a long distance [1]. The ocean environment can usually be
treated as an infinite or a half-infinite medium, thus the boundary element method (BEM) is the preferred
option for acoustic field simulation. BEM can reduce the dimensions of the domain by one. Due to the
adoption of an appropriate Green’s function, the radiation condition at infinity is automatically satisfied thus
avoiding the artificial boundary layer. As a result, BEM is a very popular method for computational ocean
acoustics [2].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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If the computational domain is far from the seabed, the influence of the seabed is negligible and thus the
seawater can be treated as an infinite medium. However, for a domain near the seabed, to ensure the accuracy
of the acoustic field simulation, the influence of the seabed has to be taken into account. To handle such a
problem, a multi-region BEM can be applied [3,4]. The multi-region BEM approach consists of two stages.
First, two BEM formulations for the seawater domain and the seabed domain are separately established using
the corresponding Green’s function. The two formulations are then linked by the continuity condition at the
interface between the two domains. It is worth emphasizing that the multi-region BEM will unavoidably entail
the discretization of the common boundary for each BEM formulation which will lead to additional
computation and discretization errors, particularly for an infinite common boundary. Thus, the BEM
formulation which can avoid the discretization of the interface between different domains is desirable.

Many researchers have considered the problem of wave phenomenon in the domain near the interface
between seawater and a porous seabed. The reflected and refracted waves due to an incident wave on the
interface between the seawater and seabed were discussed by Stoll and Kan [5], Wu et al. [6], and Denneman
et al. [7]. Also, a few researchers have investigated the characteristics of surface waves in the vicinity of the
interface between a porous medium and a fluid [8–11]. Moreover, a high-frequency limit two-dimensional
Green’s function for half-space seawater overlying a poroelastic seabed was derived by Feng and Johnson [12],
in which the porous medium is assumed to be lossless. However, to date, a three-dimensional Green’s function
for an acoustic point source located near a half-space poroelastic seabed is still unavailable in the literature.

The aim of this study is to establish Green’s function for an acoustic source within half-space seawater
overlying a porous seabed. Green’s functions for the upper half-space seawater and the poroelastic seabed
which contain unknown constants are derived first. The unknown constants of Green’s functions are then
determined by the continuity condition at the interface. A parametric study is conducted to investigate the
influence of permeability and Biot’s modulus (M) of poroelasticity on the response of the seawater and the
seabed. Also, based on the frequency domain Green’s function and inverse Fourier transform method, a time
domain example is presented. The derived Green’s function will enable the formulation of a BEM, which
avoids the discretization of the infinite interface between the seawater and the seabed.
2. Theoretical formulations

In this study, we consider an acoustic source in half-space seawater overlying a porous seabed, as depicted
in Fig. 1. The seabed is treated as a half-infinite poroelastic medium and modeled by Biot’s poroelastic theory
[13–16], while the seawater is described by the conventional Helmholtz equation.

To derive Green’s functions, the Fourier transform is involved, which has the following definition [17]:

f̂ ðoÞ :¼
Z þ1
�1

f ðtÞe�iot dt; f ðtÞ :¼
1

2p

Z þ1
�1

f̂ ðoÞeiot do, (1)
y

a half-space 

poroelastic seabed

half-space 
seawater

x

z

o

interface

an acoustic point source 

Fig. 1. An acoustic source applied within half-space seawater overlying a saturated half-space porous seabed.
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where t and o denote time and frequency, respectively, and the caret above a variable denotes the Fourier
transform.
2.1. Green’s function for the half-space seawater

As mentioned previously, the half-space seawater is described by the following Helmholtz equation:

r2p̂w þ k2
wp̂w ¼ 0, (2)

in which p̂w is the pressure of the seawater, kw is the wavenumber of the seawater, where kw ¼ o/vw, and o and
vw are the angular frequency and the acoustic velocity of the seawater, respectively.

Supposing that a harmonic acoustic source is applied at the point xs ¼ (0,0,Z0) ¼ (0,0,�h), then, Green’s
function for the half-space seawater is determined by the following inhomogeneous Helmholtz equation:

r2p̂w þ k2
wp̂w ¼ 4pdðx� xsÞ, (3)

where d(x�xs) denotes the d function.
The solution for the above inhomogeneous Helmholtz equation consists of two components: one is

homogeneous solution which is determined by Eq. (2), and named as the complementary part (regular part) in
this study; the other one is the special solution given by Eq. (3) and named as the principal part (singular part).

Green’s function for the principal part has the following form [18]:

p̂wp ¼
1

R
e�ikwR, (4)

where R ¼ |x�xs| and the subscript ‘‘p’’ denotes the principal part.
Since total Green’s functions for the seawater and the seabed are axi-symmetrical with respect to the z-axis,

to facilitate the implementation of the continuity condition between the seawater and the seabed, Eq. (4) is
expanded into the following cylindrical wave [18]:

p̂wp ¼
1

R
e�ikwR ¼

Z þ1
0

e�gw zþhj j

gw

xJ0ðxrÞdx, (5)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, x is the horizontal wavenumber for the cylindrical wave and gw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2

w

q
with

Re(gw)X0 and J0(�) represents zeroth-order first kind Bessel function. Detailed information for Bessel
function can be found in Ref. [19]. Also, in view of the time factor eiot, the imaginary part of gw should be non-
negative to guarantee vertically propagating waves from the source.

To derive the general solution for the Helmholtz equation in the cylindrical coordinate system (r,y,z), the
Hankel integral transform is involved [17]. The mth-order Hankel transform is defined as follows:

f̄
ðmÞ
ðxÞ :¼

Z þ1
0

rf ðrÞJmðxrÞdr, (6)

f ðrÞ :¼

Z þ1
0

xf̄
ðmÞ
ðxÞJmðxrÞdx; (7)

where Jm(�) denotes the mth-order first kind Bessel function and the bar above a variable denotes the Hankel
transform.

Complementary part Green’s function for the seawater can be obtained by performing the zeroth-order
Hankel transform on Eq. (2), which yields

d2 ~pð0Þwc

dz2
� ðx2 � k2

wÞ ~p
ð0Þ
wc ¼

d2 ~pð0Þwc

dz2
� g2w ~p

ð0Þ
wc ¼ 0, (8)

where the tilde above pwc denotes the combination of the Fourier transform and the Hankel transform and the
superscript ‘‘0’’ denotes the zeroth-order Hankel transform and the subscript ‘‘c’’ denotes the complementary
part Green’s function.
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The general solution for Eq. (8) can be expressed as

~pð0Þwc ¼ AðwÞðx;oÞegwz þ BðwÞðx;oÞe�gwz, (9)

To guarantee complementary part Green’s function be bounded within the upper half-space, the coefficient
B(w) should vanish. Therefore, complementary part Green function’s has the form

~pð0Þwc ¼ AðwÞðx;oÞegwz. (10)

In summary, the pressure and the vertical displacement of Green’s function for the seawater have the
following form:

~pð0Þw ¼ ~pð0Þwp þ ~pð0Þwc , (11)

~uð0Þwz ¼
1

rwo2

q ~pð0Þw

qz
¼

1

rwo2

qð ~pð0Þwp þ ~pð0ÞwcÞ

qz
, (12)

where rw is the density of the seawater and ~pð0Þwp ¼ e�gw zþhj j=gw (from Eq. (5)).
It is noted that principal part Green’s function has a Cauchy-type singularity at the point xs ¼ ð0; 0; �hÞ,

while complementary part Green’s function is regular in the upper half-space. Furthermore, the superposition
of principal part and complementary part Green’s function should fulfill the continuity condition at the
interface between the seawater and the seabed.

2.2. The general expression for Green’s function of a poroelastic seabed

2.2.1. Biot’s theory

The constitutive equations for a homogeneous porous medium have the form [13–16]

sij ¼ 2m�ij þ ldije� adijp, (13)

p ¼ �aMeþMz, (14)

where

e ¼ ui;i; z ¼ �wi;i, (15)

in which ui and wi denote the average solid displacement and the infiltration displacement of the pore fluid; eij

and e are the strain tensor and the dilatation of the solid skeleton; z is the increment of fluid content; sij the
stress of the bulk porous medium; p the excess pore pressure and dij the Kronecker delta. Moreover, l and m
are Lame constants of the solid skeleton; a and M are Biot parameters [13] accounting for the compressibility
of the saturated porous medium.

The equations of motion for the bulk porous medium and the pore fluid are expressed in terms of the
displacements ui and wi:

mui;jj þ ðlþ a2M þ mÞuj;ji þ aMwj;ji þ F i ¼ rb €ui þ rf €wi, (16)

aMuj;ji þMwj;ji þ f i ¼ rf €ui þm €wi þ
Z
k

KðtÞnw̄i, (17)

where rb and rf denote the density of the porous medium and the density of the pore fluid, and
rb ¼ ð1� fÞrs þ frf , rs is the true density of the solid skeleton and f is the porosity of the porous medium; Fi

and fi are body forces of the porous medium and the pore fluid; m ¼ a1rf =f and aN is tortuosity; Z and k

account for the viscosity of the pore fluid and the permeability of the porous medium, respectively, and K(t) is
a time-dependent viscosity correction factor which describes the transition behavior from viscosity-dominated
flow in the low-frequency range towards inertia-dominated flow at the high-frequency range [15,20,21]; a
superimposed dot on a variable denotes time derivative and the star (n) between two variables denotes time
convolution.

Although two independent displacement vectors for the solid skeleton and the pore fluid are used in
Biot’s theory, there are only four independent variables in the two-phase porous medium [22]. Thus, the
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displacement of solid skeleton and the pore pressure can be represented by the following potentials [23,24]:

ûi ¼ ĵf ;i þ ĵs;i þ eijkĉk;j, (18)

p̂ ¼ Af ĵf ;ii þ Asĵs;ii, (19)

where ĵf and ĵs denote scalar potentials corresponding to P1 wave and P2 wave, respectively, and ĉk

(k ¼ 1, 2, 3) is the vector potential for the porous medium and eijk is the Levi–Civita symbol, Af and As are two
constants. Moreover, in the Cartesian coordinate system, the vector potential ĉk (k ¼ 1, 2, 3) satisfies the
following condition:

ĉi;i ¼ 0. (20.a)

The infiltration displacement of the pore fluid can be represented by

ŵi ¼
b1
M
½p̂;i � rf o

2ûi�, (20.b)

where b1 ¼M=½mo2 � ioðZ=kÞK̂ðoÞ�. The potentials ĵf , ĵsand ĉk (k ¼ 1, 2, 3) satisfy the following Helmholtz
equations [23,24]:

r2ĵf þ k2
f ĵf ¼ 0, (21)

r2ĵs þ k2
s ĵs ¼ 0, (22)

r2ĉk þ k2
t ĉk ¼ 0; k ¼ 1; 2; 3, (23)

where kf, ks and kt in Eqs. (21)–(23) are the complex wavenumbers for the P1, P2, and the S waves of the
porous medium and given by [25]

k2
f ¼

b2Af o2 � b3
Af

; k2
s ¼

b2Aso2 � b3
As

; k2
t ¼

rgo
2

m
, (24)

where b2 ¼ 1=ðb1o
2Þ, b3 ¼ rf o

2 � a½mo2 � ioðZ=kÞK̂ðoÞ�, b4 ¼ rf o
2b1=M, rg ¼ rb � b4rf , and K̂ðoÞ denotes

the Fourier transform of K(t) in Eq. (17), and two constants Af and As are given by [25]

A2
f ;s þ
½rgo

2 � agb3 � ðlþ 2mÞb2o
2�

agb2o2
Af ;s þ

ðlþ 2mÞb3
agb2o2

¼ 0, (25)

in which ag ¼ a� b4.

2.2.2. Derivation of the general expression for Green’s function of the seabed

As stated previously, Green’s function of the seabed is axi-symmetrical with respect to the z-axis (Fig. 1). In
this case, the vector potential ĉk (k ¼ 1, 2, 3) can be represented by just one scalar potential Ẑ in the cylindrical
coordinate system [26]. Thus, in the cylindrical coordinate system, the Helmholtz Eqs. (21)–(23) can be
re-written as

q2

qr2
þ

1

r

q
qr
þ

q2

qz2

� �
ĵf þ k2

f ĵf ¼ 0, (26)

q2

qr2
þ

1

r

q
qr
þ

q2

qz2

� �
ĵs þ k2

s ĵs ¼ 0 (27)

q2

qr2
þ

1

r

q
qr
þ

q2

qz2

� �
Ẑþ k2

t Ẑ ¼ 0. (28)
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The displacements of the solid frame and the pore fluid can be expressed in terms of the potentials in the
cylindrical coordinate system (r, y, z) as follows:

ûr ¼
qĵf

qr
þ

qĵs

qr
þ

q2Ẑ
qrqz

, (29)

ûz ¼
qĵf

qz
þ

qĵs

qz
�

1

r

q
qr

r
qẐ
qr

� �
, (30)

ŵr ¼
M

b1

qp̂

qr
�

Mrf o
2

b1
ûr, (31)

ŵz ¼
M

b1

qp̂

qz
�

Mrf o
2

b1
ûz. (32)

Performing the zeroth-order Hankel transform with respect to radial coordinate r on Eqs. (26)–(28), the
general solutions of the potentials, ~jf , ~js, and ~Z in the frequency–wavenumber domain are obtained as
follows:

~jð0Þf ðx; z; oÞ ¼ AðsÞðx; oÞegf z þ BðsÞðx; oÞe�gf z, (33)

~jð0Þs ðx; z; oÞ ¼ CðsÞðx; oÞegsz þDðsÞðx; oÞe�gsz, (34)

~Zð0Þðx; z; oÞ ¼ EðsÞðx; oÞegtz þ F ðsÞðx; oÞe�gtz, (35)

where the superscript 0 denotes the zeroth-order Hankel transform and AðsÞðx; oÞ, BðsÞðx; oÞ, CðsÞðx; oÞ,
DðsÞðx; oÞ, EðsÞðx; oÞ, F ðsÞðx; oÞ are arbitrary constants. In Eqs. (33)–(35), gf, gs, and gt are the quantities
related to the vertical wavenumbers for the P1, P2, and S wave of the porous medium and are given by

gf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2

f

q
; gs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2

s

q
; gt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2

t

q
. (36)

Note that the real part of gk; k ¼ f ; s; t in Eq. (36) should be always non-negative to guarantee the
bounded condition at infinity.

By using the Hankel transform method, the displacements, the stresses, and the pore pressure can also be
represented by the potentials

~uð1Þr ¼ �x ~j
ð0Þ
f � x ~jð0Þs � x

d~Zð0Þ

dz
, (37)

~uð0Þz ¼
d ~jð0Þs

dz
þ

d ~jð0Þf

dz
þ x2 ~Zð0Þ, (38)

~wð1Þr ¼ �
x
b1
~pð0Þ �

rf o
2

b1
~uð1Þr , (39)

~wð0Þz ¼
1

b1

q ~pð0Þ

qz
�

rf o
2

b1
~uð0Þz , (40)

~pð0Þ ¼ �Af k2
f ~j
ð0Þ
f � Ask

2
s ~j
ð0Þ
s , (41)

~sð1Þzr ¼ m
d ~uð1Þr

dz
� mx ~uð0Þz , (42)
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~sð0Þzz ¼ 2m
d ~uð0Þz

dz
þ l

d2 ~jð0Þf

dz2
� x2 ~jð0Þf

 !
þ

d2 ~jð0Þs

dz2
� x2 ~jð0Þs

� �" #
� a ~pð0Þ. (43)

To guarantee Green’s function of the seabed to be bounded in the lower half-space, constants AðsÞðx; oÞ,
CðsÞðx; oÞ, and EðsÞðx; oÞ in Eqs. (33)–(35) should vanish. Thus, the potentials for Green’s function of the
seabed have the form

~jð0Þf ðx; z; oÞ ¼ BðsÞðx; oÞe�gf z, (44)

~jð0Þs ðx; z; oÞ ¼ DðsÞðx; oÞe�gsz, (45)

~Zð0Þðx; z; oÞ ¼ F ðsÞðx; oÞe�gtz. (46)

Substitution of Eqs. (44)–(46) into Eqs. (37)–(43), the displacements, the stresses, and the pore pressure
for Green’s function of the seabed can be determined. Note that Green’s function of the seabed still
contains three unknown arbitrary constants, which will be determined by the continuity condition at the
interface.
2.3. Determination of Green’s functions by the continuity condition at the interface

In this section, the continuity condition at the interface between the seawater and the seabed will be used to
determine the constants involved in Green’s functions for the seawater and the seabed. The continuity
condition at the interface can be divided into two kinds: the first kind corresponds to a permeable seabed
surface, while the second kind is associated with an impermeable seabed surface.
2.3.1. A permeable seabed surface

For a permeable seabed surface, the continuity condition in the frequency–wavenumber domain has the
following form [5]:

~uð0Þwz ¼ ~uð0Þz þ ~wð0Þz ; ~p
ð0Þ
w ¼ � ~s

ð0Þ
zz ; ~s

ð1Þ
zr ¼ 0; ~pð0Þw ¼ ~pð0Þ. (47)

Substituting Eqs. (11)–(12), (37)–(43), and (44)–(46) into Eq. (47), the constants BðsÞðx; oÞ, DðsÞðx; oÞ,
F ðsÞðx; oÞ, and AðwÞðx; oÞ for the permeable seabed surface have the following expressions:

BðsÞðx; oÞ ¼ 2ezogwb1gf ðk
2
s ðg

2
t þ x2ÞðAsða� 1Þ � lÞ þ 2mgsðgsg

2
t þ ðgs � 2gtÞx

2
ÞÞ=Pp1, (48)

DðsÞðx; oÞ ¼ 2ezogwb1gf ð4mgf gtx
2
� ðk2

f ðAf ða� 1Þ � lÞ þ 2mg2f Þðg
2
t þ x2ÞÞ=Pp1, (49)

F ðsÞðx; oÞ ¼ �4ezogwb1gf ðk
2
s Asgf ð1� aÞ � k2

f gsðAf ð1� aÞ þ lÞ þ lk2
sgf þ 2mgf gsðgf � gsÞÞ=Pp1, (50)

AðwÞðx; oÞ ¼ GAw=Pp2, (51)

Pp1 ¼ ð�Ask
2
sgf ða� 1Þ þ k2

f gsðAf ða� 1Þ � lÞ þ k2
sgf lþ 2mgf gsðgf � gsÞÞ

� ðgf rwo
2ðg2t � x2Þðrf o

2 � b1Þ þ Af k2
f ðg

2
t þ x2Þðb1gw þ gf rwo

2ÞÞ

þ ðk2
f ðg

2
t þ x2Þðlþ Af ð1� aÞÞ � 2mgf ðgf g

2
t þ x2ðgf � 2gtÞÞÞ

� ðAf k2
f gsðb1gw þ gf rwo

2Þ � Ask
2
sgf ðb1gw þ gsrwo

2ÞÞ, ð52Þ
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GAw ¼ ðe
z0gw þ Af BðsÞgwk2

f Þðlk2
s ðg

2
t þ x2Þ � 2mgsðgsg

2
t þ ðgs � 2gtÞx

2
ÞÞ

� Ask
2
s ðe

z0gwða� 1Þðg2t þ x2Þ þ BðsÞgwðlk2
f ðg

2
t þ x2Þ

� 2mgf ðgf g
2
t þ ðgf � 2gtÞx

2
ÞÞÞ, ð53Þ

Pp2 ¼ gwðk
2
s ðg

2
t þ x2ÞðAsða� 1Þ � lÞ þ 2mgsðgsg

2
t þ ðgs � 2gtÞx

2
ÞÞ. (54)

2.3.2. An impermeable seabed surface

For an impermeable seabed surface, the continuity condition in the frequency–wavenumber domain has the
following form [5]:

~uð0Þwz ¼ ~uð0Þz ; ~w
ð0Þ
z ¼ 0; ~pð0Þw ¼ � ~s

ð0Þ
zz ; ~s

ð1Þ
zr ¼ 0. (55)

Likewise, substituting Eqs. (11)–(12), (37)–(43) and (44)–(46) into Eq. (55), the constants BðsÞðx; oÞ,
DðsÞðx; oÞ, F ðsÞðx; oÞ, and AðwÞðx; oÞ for the impermeable seabed surface have the following expressions:

BðsÞðx; oÞ ¼ 2ezogwgsðAsk
2
s ðg

2
t þ x2Þ þ rf o

2ðg2t � x2ÞÞ=Pip1, (56)

DðsÞðx; oÞ ¼ �2ezogwgf ðAf k2
f ðg

2
t þ x2Þ þ rf o

2ðg2t � x2ÞÞ=Pip1, (57)

F ðsÞðx; oÞ ¼ �4ezogwgf gsðk
2
f Af � k2

s AsÞ=Pip1, (58)

AðwÞðx; oÞ ¼ � aAf k2
f BðsÞ �

ezogw

gw

þ lk2
f BðsÞ � 2mg2f BðsÞ � 4mx2gf gsgtðAf k2

f � Ask
2
s ÞB
ðsÞ=Pip2

þ gf BðsÞðk2
s ðaAs � lÞ þ 2mg2s ÞðAf k2

f ðg
2
t þ x2Þ þ rf o

2ðg2t � x2ÞÞ=Pip2, ð59Þ

Pip1 ¼ Ask
2
s gsgwðk

2
f lðg

2
t þ x2Þ � 2mgf ðgf g

2
t þ ðgf � 2gtÞx

2
ÞÞ þ Af k2

f gwðk
2
s ðg

2
t þ x2ÞðAsaðgf � gsÞ � lgf Þ

þ 2mgf gsðgsg
2
t þ ðgs � 2gtÞx

2
ÞÞ þ ðg2t � x2Þð�gwðk

2
f gsðaAf � lÞ þ k2

sgf l

þ 2mgf gsðgf � gsÞÞrf þ Af k2
f gf gsrw þ Ask

2
s gf ðagwrf þ gsrwÞÞo

2, ð60Þ

Pip2 ¼ Ask
2
sgsðg

2
t þ x2Þ þ gsrf o

2ðg2t � x2Þ. (61)

Once the constants, BðsÞðx; oÞ, DðsÞðx; oÞ, F ðsÞðx; oÞ, and AðwÞðx; oÞ are determined, the displacements, the
stresses, and the pore pressure of the seabed in the frequency–wavenumber domain can be evaluated by
Eqs. (37)–(43) and (44)–(46). The displacements, the stresses, and the pore pressure in the frequency domain can be
obtained by inversion of the Hankel transform, which can be represented uniformly by the following expression:

Ôðx;oÞ ¼
Z þ1
0

½ ~Oðx; z;oÞ�xJmðxrÞdx, (62)

where Ôðx;oÞ and ~Oðx; z;oÞ denote the displacements, the stresses, and the pore pressure in the frequency and
frequency–wavenumber domain, and m (zero or one) is the corresponding order of the Hankel transform. Note
that as closed-form frequency domain Green’s function for the seabed can not be obtained by the inversion of the
Hankel transform via (62), thus, only numerical Green’s function can be evaluated using the fast fourier transform
(FFT) algorithm [27,28] or a direct integration of integral (62).

The pressure of the seawater in the frequency domain has the following form:

p̂wðx;oÞ ¼
1

R
e�ikwR þ

Z þ1
0

½AðwÞðx;oÞegwz�xJ0ðxrÞdx. (63)

Note that the implementation of BEM requires the treatment of singular part Green’s function separately.
Thus, Eq. (63), which has a separate singular part and regular part Green’s function, will facilitate the
implementation of BEM for the seawater significantly.
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3. Numerical results

3.1. Influence of the permeability on the response of the seawater and the seabed

In this example, the influence of the permeability of the seabed on the response of the seawater and the
seabed will be examined. The pressure of the seawater ðp̂wÞ, the pore pressure ðp̂Þ, and the stress ðŝzzÞ of the
seabed will be calculated. The surface of the seabed is assumed to be permeable. Parameters for the
porous medium are assumed the following values: m ¼ 2.0� 107 Pa, l ¼ 2.0� 107 Pa, rs ¼ 2.3� 103 kg/m3,
rf ¼ 1.0� 103 kg/m3, a1 ¼ 3, a ¼ 0.9, M ¼ 3.0� 109 Pa, f ¼ 0.3, Z ¼ 10.� 10�3 Pa s, k ¼ 1.0� 10�10,
1.0� 10�11, 1.0� 10�12m2, respectively. Parameters for the seawater are as follows: rw ¼ 1.0� 103 kg/m3

and velocity vw ¼ 1414.0m/s.
For acoustic waves which are beyond the low-frequency range of Biot’s theory [14], Biot’s theory for high-

frequency waves should be applied [15]. To describe the high-frequency viscous interaction between the solid
skeleton and the pore fluid, the JKD model [20], which can treat lower frequency and higher frequency
fluid–solid interaction uniformly, is incorporated with Biot’s theory [15]. According to Johnson et al. [20],
the frequency domain viscosity correction function corresponding to the time domain K(t) in Eq. (17) assumes
the form

K̂ðoÞ ¼ 1þ i
o
oc

wg

� �1=2

; oc ¼
Zf

rf a1k
, (64)

where oc is the transition frequency [20,21], which characterizes the transition from the viscosity dominated
flow in the low-frequency range towards the inertia-dominated flow at the high-frequency range, and wg is the
pore geometry term which is equal to 1

2 for most porous media [21].
The acoustic source is located at (r, z) ¼ (0.0m,�1.0m) and the frequency o of the source takes the values

0–105 1/s. Four observation points in the seawater and the seabed are located at ðr; zÞ ¼ ð1:0m;�0:5mÞ,
ð1:0m; 0:5mÞ and ðr; zÞ ¼ ð15:0m;�0:5mÞ, and ð15:0m; 0:5mÞ, respectively. The pressure of the seawater ðp̂wÞ,
the pore pressure ðp̂Þ, and the stress ðŝzzÞ of the seabed versus the frequency for the three cases of
k ¼ 1.0� 10�10, 1.0� 10�11, and 1.0� 10�12m2 at the points with r ¼ 1m are plotted in Fig. 2(a)–(c),
respectively, while those for the points with r ¼ 15m are plotted in Fig. 2(d)–(f). Also, the pressure of the
seawater with the fixed boundary condition (vertical displacement vanishes at the interface) at the interface
(z ¼ 0) is illustrated in Fig. 2(a) and (d).

Fig. 2(a) shows that the permeability of the seabed has very little influence on the pressure of the
seawater. Also, the pressures of the seawater for the three cases are smaller than that for the fixed
boundary case. Fig. 2(b) and (c) indicate that at lower frequency range, the difference between the
responses of the seabed for the three cases is not very large. However, with increasing frequency, the
differences between the responses of the seabed for the three cases become significant. Fig. 2(d) illustrates
the pressure of the seawater at the point ðr; zÞ ¼ ð15:0m;�0:5mÞ: compared with the pressure at the
point ðr; zÞ ¼ ð1:0m;�0:5mÞ, it decreases considerably; also, the pressure of the seawater at this point is
less oscillatory than that at the point ðr; zÞ ¼ ð1:0m;�0:5mÞ; moreover, it is not always smaller than the
pressure of the seawater with the fixed boundary. Fig. 2(e) and (f) show that the variation of the response
of the porous seabed in the low-frequency range becomes less steeper when the radial distance varies from
r ¼ 1 to 15m.
3.2. Influence of modulus M on the response of the seawater and the seabed

In this example, the influence of Biot’s modulus M of the seabed on the response of the seabed and the
seawater will be investigated. The pressure of the seawater p̂w, the pore pressure p̂, the stress ŝzz, and the
displacement ûz of the seabed are calculated. The surface of the seabed is assumed to be impermeable.
Parameters for the porous medium are assumed as the following values: m ¼ 2.0� 107 Pa, l ¼ 2.0� 107 Pa,
rs ¼ 2.3 103 kg/m3, rf ¼ 1.0� 103 kg/m3, a1 ¼ 3, a ¼ 0.9, M ¼ 2.0� 108, 1.0� 109, 5.0� 109 Pa, f ¼ 0.3,
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Fig. 2. The response of the seawater and the seabed to an acoustic source located at ðr; zÞ ¼ ð0:0m;�1:0mÞwith angular frequency

o ¼ 02105 l=s. Three cases corresponding to the permeability of the seabed k ¼ 1.0� 10�10, 1.0� 10�11, and 1.0� 10�12m2, respectively,

are calculated: (a) variation of the pressure of the seawater p̂w at the point ðr; zÞ ¼ ð1:0m;�0:5mÞ versus angular frequency (o ¼ 02105 l=s);
(b) variation of the pressure p̂ of the seabed at the point ðr; zÞ ¼ ð1:0m; 0:5mÞ versus angular frequency (o ¼ 02105 l=s); (c) variation of the

stress ŝzzof the seabed at the point ðr; zÞ ¼ ð1:0m; 0:5mÞ versus angular frequency (o ¼ 02105 l=s); (d) variation of the pressure of the

seawater p̂w at the point ðr; zÞ ¼ ð15:0m;�0:5mÞ versus angular frequency (o ¼ 02105 l=s); (e) variation of the pressure p̂ of the seabed at

the point ðr; zÞ ¼ ð15:0m; 0:5mÞ versus angular frequency (o ¼ 02105 l=s); (f) variation of the stress ŝzz of the seabed at the point

ðr; zÞ ¼ ð15:0m; 0:5mÞ versus angular frequency (o ¼ 02105 l=s).

J.-F. Lu, D.-S. Jeng / Journal of Sound and Vibration 307 (2007) 172–186 181



ARTICLE IN PRESS

0 2 4 6 8 10 12 14

0.0

0.5

1.0

1.5

2.0

2.5

 M=2*10
8
Pa

 M=1*10
9
Pa

 M=5*10
9
Pa

 fixed boundary

 free boundary

0 2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

 M=2*10
8
Pa

 M=1*10
9
Pa

 M=5*10
9
Pa

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10 12 14

r (m)
r (m)

σ z
z
 (

P
a
)

u
z
 (

m
)

1.80E-009

1.50E-009

1.20E-009

9.00E-010

8.00E-010

3.00E-010

0.00E+000

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0

M=5*10
9
Pa

M=1*10
9
Pa

M=2*10
8
Pa

M=5*10
9
Pa

M=1*10
9
Pa

M=2*10
8
Pa

p
w

 (
P

a
)

r (m)

p
 (

P
a

)

r (m)
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o ¼ 103 l=s. Three cases corresponding to Biot’s modulus of the seabed M ¼ 2.0� 108, 1.0� 109, 5.0� 109 Pa, respectively, are calculated:

(a) the pressure p̂w of the seawater at points ðr; zÞ ¼ ð0:0215m;�1:0mÞ; (b) the pore pressure p̂ of the seabed at points

ðr; zÞ ¼ ð0:0215m; 1:0mÞ; (c) the stress ŝzz of the seabed at points ðr; zÞ ¼ ð0:0215m;�1:0mÞ; (d) the displacement ûz of the seabed at

points ðr; zÞ ¼ ð0:0215m;�1:0mÞ.
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Z ¼ 1.0� 10�3 Pa s, k ¼ 1.0� 10�12m2. The parameters for the seawater are as follows: rw ¼ 1.0� 103 kg/m3

and velocity vw ¼ 1414.0m/s.
The acoustic source is located at ðr; zÞ ¼ ð0:0m;�0:5mÞ and the frequency o of the source is equal to 103 1/s.

Observation points in the seawater and the seabed are located at ðr; zÞ ¼ ð0:0�15m;�1:0mÞ and
ðr; zÞ ¼ ð0:0�15m; 1:0mÞ. The pressure of the seawater p̂w, the pore pressure p̂, the stress ŝzz, and the
displacement ûz for the three cases with M ¼ 2.0� 108, 1.0� 109, and 5.0� 109 Pa are plotted in Fig. 3(a)–(d),
respectively. Also, the pressures for the seawater with a fixed boundary and a free boundary (with vanishing
pressure) at the interface (z ¼ 0) are plotted in Fig. 3(a).

Fig. 3(a) shows that the modulus M of the seabed has a considerable influence on the pressure of the
seawater: with increasing modulus M, the pressure of the seawater increases. Since modulus M is associated
with the compressibility of the pore fluid it is possible to distinguish different pore fluids according to the
reflected wave from the porous seabed. Also, it is interesting to notice that with increasing modulus M, the
seawater pressure curves shift from the free boundary curve to the fixed boundary curve gradually. The pore
pressure ðp̂Þ and the stress ðŝzzÞ for points with large coordinate r increase with increasing modulus M.
However, for a smaller coordinate r, the stress ŝzz decreases with increasing modulus M. Fig. 3(d) shows that
for a small r, the vertical displacement ûz decreases with increasing modulus M. Also, it decreases very quickly
with increasing coordinate r.
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3.3. The time domain response of the seawater and seabed due to an acoustic point source located in the seawater

In this example, based on the frequency domain Green’s function, the time domain response of the seawater
and the seabed due to an acoustic point source located in the seawater is calculated using inverse
Fourier transform method, which is implemented by the FFT method. Parameters for the porous medium are
assumed as the following values: m ¼ 5.0� 109 Pa, l ¼ 10.0� 109 Pa, rs ¼ 2.5� 103 kg/m3, rf ¼ 1.0� 103 kg/
m3, a1 ¼ 3, a ¼ 0.7, M ¼ 10.0� 109 Pa, f ¼ 0.33, Z ¼ 1.0� 10�3 Pa s, k ¼ 1.0� 10�8, and 1.0� 10�12m2.
Parameters for the seawater are as follows: rw ¼ 1.0� 103 kg/m3 and velocity vw ¼ 1414.0m/s.

The acoustic point source is of the Ricker wavelet function [29] given by

RðtÞ ¼
o2

cðt� tsÞ
2

2
� 1

� �
e�o

2
c ðt�tsÞ

2=4, (65)

in which the central frequency fc and the time shift ts of the acoustic point source are fc ¼ 1� 103Hz, and
ts ¼ 2.5� 10�3 s with fc ¼ oc/(2p). The acoustic source is located at ðr; zÞ ¼ ð0:0m;�10:0mÞ. Observation
points in the seawater and the seabed are located at ðr; zÞ ¼ ð20:0m;�20:0mÞ and ðr; zÞ ¼ ð20:0m; 20:0mÞ. The
pressure of the seawater pw, the pore pressure p, the stress szz and the displacement uz of the seabed with
a permeable and an impermeable surface for permeability k ¼ 1.0� 10�8, 1.0� 10�12m2 are plotted in Figs. 4
and 5, respectively. When retrieving the time domain response from frequency domain Green’s function via
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Fig. 4. The time domain response of the seawater and the seabed to an acoustic source located at ðr; zÞ ¼ ð0:0m;�10:0mÞ with the time

history given by the Ricker wavelet function. The permeability of the seabed is equal to k ¼ 1.0� 10�8 and two cases for the seabed with a

permeable and an impermeable surface are calculated: (a) the pressure pw of the seawater at the point ðr; zÞ ¼ ð20m;�20mÞ for

permeability k ¼ 1.0� 10�8m2; (b) the pore pressure p of the seabed at the point ðr; zÞ ¼ ð20m; 20mÞ for permeability k ¼ 1.0�10�8m2;

(c) the stress szz of the seabed at the point ðr; zÞ ¼ ð20m; 20mÞ for permeability k ¼ 1.0� 10�8m2; (d) the displacement uz of the seabed at

the point ðr; zÞ ¼ ð20m; 20mÞ for permeability k ¼ 1.0� 10�8m2.
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Fig. 5. The time domain response of the seawater and the seabed to an acoustic source located at ðr; zÞ ¼ ð0:0m;�10:0mÞ with the time

history given by the Ricker wavelet function. The permeability of the seabed is equal to k ¼ 1.0� 10�12m2 and two cases for the seabed

with a permeable and an impermeable surface are calculated: (a) the pressure pw of the seawater at the point ðr; zÞ ¼ ð20m;�20mÞ for
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J.-F. Lu, D.-S. Jeng / Journal of Sound and Vibration 307 (2007) 172–186184
the FFT approach, the number of the sample points is N ¼ 281; the sample spacing in the time domain is
Dt ¼ 1.6� 10�4 s and the sample spacing in the frequency domain is given by Do ¼ 2p=ðNDtÞ s�1.

Fig. 4(a) shows that two kinds of waves contribute to the pressure of the seawater: one is the direct incident
wave due to the source; the other is the reflected wave from the surface of the seabed. As part of the energy of
the wave incident on the seabed surface is transmitted into the seabed, the pressure of the seawater due to the
direct incident wave is much larger than that due to the wave which is reflected from the surface of the seabed.
Moreover, the continuity condition at the seabed surface (permeable or impermeable) almost makes no
difference to the pressure of the seawater. For the seabed, again, we see that the continuity condition of the
seabed has almost no influence on the pore pressure due to the P1 wave. However, for the P2 wave, the
continuity condition has a significant influence on the pore pressure: the pore pressure of the permeable case is
much larger than that of the impermeable case, which is obviously due to the fact that an impermeable seabed
surface tends to prevent the relative motion between the pore fluid and the solid skeleton. Also, the shear wave
of the porous medium has no contribution to the pore pressure of the seabed, which agrees with the
constitutive relation of the pore fluid (Equation (14)). Fig. 4(c) and (d) indicate that all the three wave modes
(the P1, P2, and the shear wave) of the porous medium contribute to the stress szz and the displacement uz.
However, compared with the P1 wave and the shear wave, the contribution from the P2 wave is the smallest.
Moreover, it follows from Fig. 4(c) and (d) that the continuity condition at the seabed surface has the largest
influence on the P2 wave; the second largest on the shear wave and the least on the P1 wave. Fig. 5 illustrates
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that for the case k ¼ 1.0� 10�12m2, the P2 wave is fully attenuated within the region near the seabed surface
and thus, its influence on the response of the porous medium is invisible. Also, for k ¼ 1.0� 10�12m2, the high
attenuation of the porous medium makes the relative motion between the pore fluid and the solid skeleton
difficult, which make the difference between a permeable and an impermeable seabed surface negligible. Thus,
the responses of the porous medium corresponding to the permeable case and the impermeable case are very
close to each other (Fig. 5).
4. Conclusions

The closed-form Green’s function in the frequency–wavenumber domain for an acoustic source in half-
space seawater overlying a porous seabed has been established. The obtained Green’s function is crucial for
the BEM analysis of a seawater region near a porous seabed. The frequency domain Green’s function for the
seawater is separated into two parts: a singular part and a regular part. The singular part is in closed-form in
the frequency domain, while the regular part can only be obtained by performing numerical inversion of the
Hankel transform. By inversion of the Hankel transform, numerical results of Green’s function in the
frequency domain are obtained. Numerical results show that the permeability of the porous seabed has a very
little influence on the response of the seawater, while the modulus M has an obvious influence on both the
response of the seawater and the seabed. Based on the inverse Fourier transform method and the frequency
domain Green’s function, an example demonstrating the time domain response of the seawater and the seabed
has also been presented.
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